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Abstract

We consider parallel computing technology for the thermal simulation of multicomponent, multiphase fluid flow in

petroleum reservoirs. This paper reports the development and applications of a parallel thermal recovery simulation

code. This code utilizes the message passing interface (MPI) library, overlapping domain decomposition, and dynamic

memory allocation techniques. Its efficiency is investigated through simulation of two three-dimensional multicom-

ponent, multiphase field models for heavy oil crudes. Numerical results for these two simulation models indicate that

this parallel code can significantly improve capacity and efficiency for large-scale thermal simulations.
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1. Introduction

The rapid development of parallel computers can overcome the limitations of problem size and space
resolution for reservoir simulation on a single-processor machine. In the past decade, the total number of

gridblocks employed in a typical reservoir simulator has increased from thousands to millions. This is

particularly due to the advent of the most prevalent parallel computers, distributed-memory machines,

which can be made up of hundreds to thousands of processors. Most parallel computing techniques in the

petroleum industry have been developed for reservoir simulation using the black oil and compositional

models (see, e.g. [2,6]). These two models involve the mass conservation equation, Darcy’s law, and mass

interchange between fluid phases, i.e., they describe isothermal flow. Parallel computing algorithms for the
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thermal model which describes non-isothermal flow of multicomponent, multiphase fluids have not been

available. The thermal model involves more physics and is more complex than the black oil and compo-

sitional models. Not only does it introduce one more unknown (temperature or energy), it also introduces
greater nonlinearity and coupling in the governing equations. Hence numerical simulation for this model is

far more complicated than that for other two simpler models.

Thermal methods, particularly steam drive and soak, make up the largest share of the enhanced oil

recovery (EOR) projects in petroleum industry and have experienced rapid growth since the early 1970s.

Steam methods currently account for nearly 80% of the EOR oil in USA [8], for example. Thermal flooding

has been commercially successful for the past 30 years. Thus the development of parallel computing

techniques for large-scale thermal simulation has become increasingly important.

In this paper, we report on our work in parallelization of a serial code for the non-isothermal flow
of multicomponent, multiphase fluids in three-dimensional petroleum reservoirs. This serial code has

been widely used in many oilfields. It can be exploited for designing oil recovery schemes of old and

new fields, examining history match, predicting production, and studying residual oil distribution [11].

Its parallel version is developed using the message passing interface (MPI) library. MPI is a standard

procedure for message passing that allows data communication between different processors. The

parallel implementation first divides a simulation domain into a number of smaller domains, each of

which corresponds to a processor. The nonlinear governing equations describing the flow system are

then discretized in space and time and solved on each smaller domain. These smaller domains overlap
so that the communication between neighboring domains (i.e., processors) occurs over the overlapping

regions.

Parallel computing is more useful for thermal methods than for all other methods used in the EOR

projects due to their displacement mechanisms. The thermal methods rely on several displacement

mechanisms to recover oil, such as viscosity reduction, distillation, miscible displacement, thermal ex-

pansion, wettability changes, cracking, and lowered oil–water interfacial tension. For most applications,

the most important is the reduction of crude viscosity with increasing temperature. The four basic ap-

proaches to achieve this mechanism are hot water flooding, steam soak, steam drive, and in situ com-
bustion. In a steam soak (stimulation or huff’n puff), for example, steam is introduced into a well, and

then the well is returned to production after a brief shut-in period. In this approach, all the wells do not

necessarily have the same operating schemes. The well operating schemes significantly affect the control

and choice of time step sizes (and even space step sizes). The step sizes are small in the regions where wells

are very active (particularly where a well is in the shut-in and production period), and can be large in the

regions where the wells are not active (or where a well is in the injection period). Thus the step sizes at

different locations of wells can be very different. The domain decomposition and parallel computing

techniques provide an excellent scenario in which different step sizes in different regions can be efficiently
used and controlled.

The significant enhancement of computational efficiency in our parallel thermal code is demonstrated

through simulation of two field flow problems. These problems simulate three-dimensional models of

multicomponent, multiphase flow involving heavy crudes. Simulation results carried out on different

parallel computers indicate that the parallel code provides very accurate history matches and that this code

achieves superlinear speed-up. We have been developing, refining, and testing this parallel code since 1998,

and have had extensive experience in its development and applications in the petroleum industry. In this

paper, we summarize our code development and application experience in the past 5 years.
The rest of this paper is organized as follows. In Section 2, we briefly review the differential equations

governing thermal recovery simulation. Then, in Section 3, we describe our parallel code. The domain

decomposition method, date communication, load balancing, time step size controlling, and linear equation

solvers are described. In Section 4, we present two simulation examples. Finally, we conclude with a few

remarks.
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2. The governing equations

The parallel code evolves from a serial code for thermal simulation of multicomponent, multiphase fluid
flow in petroleum reservoirs. This serial code has been widely used in many oil fields, and has been de-

veloped based on the displacement mechanisms of thermal methods: (a) reduction of crude viscosity with

increasing temperature, (b) change of relative permeabilities for greater oil displacement, (c) vaporization of

connate water and parts of crudes for a miscible displacement of light components, and (d) high temper-

atures of fluids and rock to maintain high reservoir pressure. It can model such important physical factors

and processes as

• viscosity, gravity, and capillary forces,

• heat conduction and convection processes,
• heat losses to overburden and underburden of a reservoir,

• mass transfer between phases,

• effects of temperature on physical property parameters of oil, gas, and water,

• rock compression and expansion.

The governing equations for the thermal model include the mass and energy conservation equations,

Darcy’s law, and the mole fraction, saturation, and capillary pressure constraint equations [1]:

(1) The mass conservation equation
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where / is the rock porosity, qj, sj, and vj are the density, saturation, and surface flow velocity of phase

j, Nc and Np are the numbers of compositions and phases, respectively, vij is the mole fraction of
composition i in phase j, qi is the source item of composition i, and V is a typical volume with surface S.

(2) The energy conservation equation
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where uj, qrock, Cp, T , Tint, qi;h, qi;c, Qi;c, and Qi;h are, respectively, the inner energy of phase j, rock
density, rock heat capacity, reservoir temperature, initial temperature, enthalpy flow velocity, heat flow

between adjacent volumes, heat source item, and heat loss to overburden and underburden.
(3) Darcy’s law
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where kj, pj, and lj are the effective permeability, pressure, and viscosity for phase j, g is the gravi-

tational acceleration, and z is the depth.

(4) The mole fraction constraint equation

XNc

i¼1

vij ¼ 1; j ¼ 1; 2; . . . ;Np:

(5) The saturation constraint equation

XNp

j¼1

sj ¼ 1:
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(6) The capillary constraint equation

pcj1 ¼ pj � p1; j ¼ 2; 3; . . . ;Np:

There are Nc þ 3Np þ 1 equations (Nc mass equations, an energy equation, Np Darcy’s laws, Np mole

fraction equations, a saturation equation, and Np � 1 capillary equations) for the same number of un-

knowns (Nc mole fractions, Np saturations, Np velocities, Np pressures, and temperature). The differential
system is closed with a proper set of boundary and initial conditions. In computations, Darcy’s laws for the

fluid velocities and the capillary constraints are substituted into the mass conservation equations so the

unknowns vj and pk can be eliminated (j ¼ 1; 2; . . . ;Np, k ¼ 2; 3; . . . ;Np). Then the total number of equa-

tions and unknowns is reduced to Nc þ Np þ 2 (Nc mass equations, Np mole fraction equations, an energy

equation, and a saturation equation for the unknowns: Nc mole fractions, Np saturations, pressure, and

temperature). If there exist M grid points, a system of MðNc þ Np þ 2Þ algebraic equations need to be

solved. For a simulation problem with the order of 10,000 grid points, the computational cost and storage

memory would be enormous. Thus parallel computing techniques are more appropriate.
3. Parallel implementation

Due to the fact that 60–80% of the computational time is spent on the assembly and solution of a linear

system of algebraic equations, a prevailing strategy in reservoir simulation is to parallelize only this part,

i.e., the linear solver part. However, this strategy may not be effective. First, the model scale is limited by

the size of accessible memory of the CPU. This difficulty becomes prominent in a parallel environment with
a PC or workstation cluster. Also, most preconditioners for linear solvers used in reservoir simulation are

based on incomplete LU factorization, which is by nature sequential. While various techniques, such as the

use of parallel approximate inverses, have been introduced to parallelize these preconditioners, additional

computations are needed. Thus, to improve really the efficiency of a simulation code, a global parallel

scheme must be employed.

In this paper we exploit the domain decomposition method for the parallel implementation, i.e, we

divide a simulation domain into a number of smaller domains. Each of these smaller domains corresponds

to a processor, that is, each processor performs the entire flow simulation on its corresponding domain,
which includes initialization, PVT and rock property data calculation, space and time discretization,

Newton–Raphson iteration, solution of linear systems, and data output.
3.1. Domain decomposition

The domain decomposition method is a technique for solving a partial differential problem based on a

decomposition of the spatial domain of the problem into a number of smaller domains [4]. In general, this

method can be classified as an overlapping method or a non-overlapping method. The overlapping method
is generally easier to describe and implement [4]. It is also easier to achieve an optimal convergence rate

using this method, and it is often more robust. But additional work is needed on the overlapped regions.

Furthermore, if the coefficients of a differential problem are discontinuous across inter-boundaries, the

extended subdomains have discontinuous coefficients, which makes their solution more problematic. On the

other hand, the non-overlapping method requires solution of interface problems at interfaces of the sub-

domains. In this paper we employ the overlapping technique.

Let fXigNi¼1 be a non-overlapping division of the reservoir domain X. Each subdomain Xi may be chosen

as elements from a coarse finite element partition TH of X with mesh size H . Next, each Xi is extended to X̂i,
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consisting of all points in X within a distance of d. We use matched grids here, i.e., the grids in neighboring

subdomains are matched.

In this paper, we use the block-centered finite difference method in space with harmonically averaged
coefficients (or, equivalently [15], the mixed finite element method using the Raviart–Thomas [14] and

Nedelec [13] spaces of lowest-order on rectangular parallelepipeds) and the backward Euler scheme in time

for the discretization of the governing equations stated in the previous section. The discretized equations

are then solved simultaneously and implicitly, i.e., in a fully implicit manner. These nonlinear equations are

solved using the Newton–Raphson iteration.

The domain decomposition method applied to a parabolic problem is simpler than for an elliptic

problem. To see this, we consider the parabolic equation

c
ou
ot

þ LðuÞ ¼ f ; ð3:1Þ

where L is a linear differential operator of second order. After discretizing in space by finite differences and

in time by the backward Euler scheme (with time step Dt), this equation becomes

cnþ1 u
nþ1 � un

Dt
þLnþ1unþ1 ¼ f nþ1; ð3:2Þ

where un ¼ uðx; tnÞ at the nth time level and Lnþ1 is the matrix corresponding to the discretization of L in

space. At every time step tnþ1, Eq. (3.2) gives an elliptic problem

ðcnþ1I þ DtLnþ1Þunþ1 ¼ cnþ1un þ Dtf nþ1; ð3:3Þ

where I is the identity matrix. Now, we see that the matrix of this system has a much better condition
number Oð1þ Dt=h2Þ, instead of the condition number of Oðh�2Þ for a typical elliptic problem, where h is

the mesh size of a fine partition Th of X over which we seek an approximate solution to u.
Let Lnþ1 be an M �M matrix, and let M̂i be the number of interior nodes in X̂i. For each X̂i,

i ¼ 1; 2; . . . ;N , let Îi represent the indices of the nodes lying in the interior of X̂i. Now, let Ri indicate the

M � M̂i matrix (with entries of 1’s and 0’s) that restricts a vector w of length M to a subvector Riw of length

M̂i by choosing the subvector having indices in Îi (corresponding to the interior nodes in X̂i). Ri is called the

restriction matrix, and the transpose RT
i of Ri is referred to as an interpolation or extension matrix. RT

i

extends subvectors of length M̂i on X̂i to vectors of length M using extension by zero to the rest of X.
Analogously, RH and RT

H represent the restriction and extension matrices associated with the coarse grid TH .
Now, the local submatrices are given by Lnþ1

i ¼ Riðcnþ1I þ DtLnþ1ÞRT
i .

The usual additive Schwarz methods based on overlapping domain decomposition are defined by
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Method (3.5) involves a coarse grid correction.

It can be shown [3] that there exists a constant C such that if Dt6CH 2, the condition number

condððSnþ1
1 Þ�1ðcnþ1I þ DtLnþ1ÞÞ is bounded by a constant C1 independent of Dt, H , and h. For a larger Dt,

condððSnþ1
2 Þ�1ðcnþ1I þ DtLnþ1ÞÞ possesses the same property. Hence, if Dt6CH 2, method (3.4) is effective.
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However, if Dt is larger, a coarse grid correction must be employed to maintain a constant rate of con-

vergence. Similar results hold for multiplicative Schwarz methods [3].

The numerical simulation of fluid flows in petroleum reservoirs has some special features. Each grid-
block must contain at most one injection or production well. Thus, in the usual case where there are

hundreds of wells in a reservoir, the coarse grid cannot be coarse enough for our domain decomposition

approach, that is, H is often small. In addition, due to the peculiar displacement mechanisms of thermal

methods mentioned in Section 1, it would require tremendous computational time to carry out the nu-

merical simulation over the entire reservoir domain. Thus method (3.5) is not so effective. On the other

hand, when H is small, the condition Dt6CH 2 for method (3.4) is too restrictive, particularly for long time

simulation. In this paper we exploit a simplified domain decomposition method, which uses the parabolic

structure of problem (3.1). Indeed, for such a problem, the so-called Green’s function decays exponentially
in space, which implies that any local error has almost no influence away from its original position [7].

We write (3.2) as

ðcnþ1I þ DtLnþ1Þðunþ1 � unÞ ¼ Dtðf nþ1 �Lnþ1unÞ:

Thus, at the time step tnþ1, we solve the equation

ðcnþ1I þ DtLnþ1ÞDu ¼ Df nþ1 � Dtðf nþ1 �Lnþ1unÞ; ð3:6Þ

where Du ¼ unþ1 � un. Now, the simplified domain decomposition method is constructed as follows, for

i ¼ 1; 2; . . . ;N ;

ðcnþ1I þ DtLnþ1ÞDûi ¼ Df nþ1 in Xi;
ðcnþ1I þ DtLnþ1ÞDûi ¼ 0 in X̂i n Xi;
Dûi ¼ 0 on oX̂i:

ð3:7Þ

The boundary condition for Dûi on oX̂i can also be of the Neumann type. Obviously, these boundary

conditions are not correct, but the associated error will occur only in a small neighborhood of oX̂i. Thus Dûi
may accurately approximate Du in Xi.

A major problem in this approach is to determine where the boundary oX̂i is located. As observed in [12],

a moderate amount of overlapping gives very good results. In fact, using a maximum principle argument,

one can prove the error estimate [9]

kDu� DûkH1ðXÞ 6Ce�d=DtkDf nþ1kL2ðXÞ;

where k � kH1ðXÞ and k � kL2ðXÞ are the H 1- and L2-norms, respectively, and d is the overlapping width.

Therefore, with reasonably large overlapping (or small time steps), the solution Dû to (3.7) approximates

Du.
3.2. Load balancing

In parallel computing, one should try to distribute the work load equally on all processors. In practice, it

is difficult to achieve a load balance close to the optimum. Fortunately, in reservoir simulation, there are
several guidelines for distributing the work load. First, the grid blocks should be evenly distributed among

the processors with not only approximately the same number of internal blocks, but also roughly the same

number of external blocks per processor. Second, if natural faults exist in a reservoir, these faults should be

used as the inter-boundaries between subdomains. Some of the PVT and rock property data are discon-

tinuous across the faults, and there is no data communication across them. Third, all the subdomains

should contain the same number of wells. The well-operating schemes must be also taken into account for
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load balancing. A well can be an injector or producer. In the thermal modeling, a well can be both, and the

injection, production, and shut-in periods need be considered in distributing the work load. Among these

three guidelines, the last should be respected the most.
3.3. Data communication

Message passing between processors is an essential component of parallel computing. It can take two

forms: blocking (synchronous) and non-blocking (asynchronous). Which form is to be used depends on the

characteristics of data to be transferred. In reservoir simulation, according to their time variant charac-

teristics, the communication data are divided into three basic types, the static data, the slow transient data,

and the fast transient data. The data describing the geometric model of a reservoir and rock property
parameters are the static data. Essentially, these data do not change in the simulation. At a time step in the

iteration process, the values of pressure, temperature, and saturation are the slow transient data. These data

need to be recorded at certain times to restart a computation. All others are fast transient data. In par-

ticular, those that are frequently transferred over the overlapping regions are of this type. The blocking

communication mode is used to transfer the static and slow transient data, and the non-blocking com-

munication mode is adopted to transfer the fast transient data to reduce communication overhead and

improve communication efficiency.
3.4. Time step size and communication time control

As discussed in Section 1, the time step sizes on different subdomains can be different. To ensure that the

well data of all production periods can be safely loaded and that a simulation process is stable and accurate

on each processor, the step size Dtni on the ith subdomain Xi can be chosen using an adaptive control

strategy developed in [5] that possesses these properties, i ¼ 1; 2; . . . ;N .

To synchronize the computational processes on different processors and to pass messages efficiently

between processors at certain times, the nth communication time is controlled as follows:
1. Predict the communication time tni for the ith subdomain, i ¼ 1; 2; . . . ;N .

2. Determine the nth synchronic communication time tn by

tn ¼ minftn1; tn2; . . . ; tnNg:

3. Find the nth communication time tni for the ith subdomain: tni ¼ tn.
While the minimum time level approach is recommended here, we point out that the maximum and

weighted time level approaches can be also utilized. From our experience, when a domain decomposition

approximately achieves a load balance, these three approaches do not differ much. The approach adopted

here generates the most accurate solutions.
3.5. Linear equation solution

After the spatially and temporally discretized nonlinear equations are assembled for each subdomain at

each time step, these equations are solved using the Newton–Raphson iteration. At each Newton iteration,

a linear system of algebraic equations is solved using a preconditioned iterative algorithm. In reservoir

simulation, this system has peculiar structures. The coefficient (stiffness) matrix is sparse but non-symmetric

and indefinite. While sparse, its band structure is often spoiled by wells that perforate into many gridblocks.

For such a general system, Krylov subspace methods, such as BiCGSTAB (bi-conjugate gradient stablized),
GMRES (generalized minimum residual), and ORTHOMIN (orthogonal minimum residual), are usually

employed as linear solvers. A preconditioner is often used in conjunction with the iterative solver to
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accelerate its convergence. In this paper the linear solver is based on ORTHOMIN [17], with an incomplete

LU factorization (ILU) preconditioner; the more robust algorithm GMRES [16] can be also used, and it is

under investigation.
4. Numerical tests

We use two field-scale models [10] to test the efficiency of our parallel thermal simulation code. We

carried out the numerical tests on three parallel computers to which we have direct access, a PC cluster with

8 processors, Dawn 1000A, and Dawn 2002.

Although numerical tests are not presented on a parallel machine with a larger number of processors, we
are confident that observations similar to those in this section can be made for larger machines.

4.1. Example 1

This simulation model comes from the design of development and production schemes for a real oil field.

This field started to operate on May 1, 1987. The grid blocks used for the simulation are 155� 62� 6, the

step size in the x- and y-directions is 35 m, and it is 5 m in the z-direction. It has six geological layers, and

there are 290 wells. Initially, the oil saturation in the oil rich region is 0.66, and the average oil saturation in
the entire reservoir is 0.58. The initial pressure and temperature are 9.2 Mpa and 37 �C, respectively. At 30

�C, the oil viscosity is 3700 cP. The density of crude oil is 977 kg/m3. The no-flow boundary condition on

the external boundary of the reservoir is utilized in this and other examples.

The choice of the time step size is based on an adaptive control strategy [5], and is of the order of several

days. The linear solver is based on ORTHOMIN [17] with incomplete LU factorization preconditioners,

and the fully implicit scheme in time is utilized. The oil reservoir has three large faults. The parallelization

strategy in the code supports unstructured domain decomposition; these faults are used as the internal

boundaries of subdomains so that the data communication between them is reduced. The decomposition of
the reservoir into eight subdomains (on a typical layer) is shown in Fig. 1.

The first numerical test was carried out on a linux parallel PC cluster: ROCKETCALC with 8 pro-

cessors; each processor has Intel Pentium, 2 GHz, 2G RAM, and integrated Intel 100Mbps ethernet. The

simulation was run on from 2 to 8 processors by consecutively doubling the number of processors. The

daily oil production (m3/day) and cumulative oil production (m3) curves obtained using 2, 4, and 8 pro-

cessors, respectively, are displayed in Figs. 2 and 3. They indicate that the production curves obtained on

the different numbers of processors match very well. The wall clock time and CPU time used for the

simulation run on these processors at the final time T ¼ 3850 days (May 1987 –December 1997) are
Fig. 1. A partition of X into eight subdomains in Example 1.



Fig. 2. Daily oil production in Example 1.

Fig. 3. Cumulative oil production in Example 1.
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reported in Table 1. This table shows that doubling the processor number reduces the total execution time

by far more than half. This table also shows the speed-up (relative to two processors) for the parallel code.

This speed-up is defined based on the performance of two processors as T2=Tp, where Tp is the CPU time

using p processors. The speed-ups from 2 to 4 and 8 processors increase by factors of 5.87 and 37.58,

respectively. These results clearly indicate that the CPU time is significantly reduced as the number of

processors increases.



Fig. 4. History match in Example 1: (� � �) real production, (–––) calculated production.

Table 1

Speedups on different number of processors

2 4 8

Wall-clock time (s) 243,486.3 61,260.5 12,240

CPU time (s) 167,824.6 28,602.5 4465.9

Speed-up – 5.87 37.58

Number of time steps 6636 3458 1827
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We now tested the same example on a different parallel computer, Dawn 2002. This computer is a cluster

with 80 nodes, each node has two CPUs and 2 GB RAM, and each CPU is the IBM power P3. We first

exploited the same number of grid blocks, i.e., 155� 62� 6. The history match for the daily liquid (water

and oil) production (tn/day, the left vertical axis) and cumulative liquid production (kT, the right axis)

obtained using 32 processors is given in Fig. 4. The matching error for these curves is within 1.5%, which

shows a high accuracy of the parallel code.

The CPU time used for the simulation run on 8, 16, and 32 processors at the final time T ¼ 3850 days
and the speed-ups (T8=Tp) from 8 to 16 and 32 processors are listed in Table 2. The speed-ups from 8 to 16

and 32 processors increase by factors of 2.67 and 6.50, respectively, and superlinear speed-up occurs. From

Tables 1 and 2, we see that the PC cluster achieves better speed-ups.

The number of grids was now doubled in the x- and y-directions, i.e., the number of grid blocks is now

310� 124� 6. The corresponding CPU time for the simulation on 16 and 32 processors at the final time

T ¼ 3850 days and the speed-up (T16=Tp) from 16 and 32 processors are described in Table 3. This table

indicates that a similar speed-up is observed even if the grid is refined. As an illustration, the residual oil

distribution on the first layer of the reservoir is shown in Fig. 6.
Table 2

Speedups on different number of processors on Dawn 2002

8 16 32

CPU time (s) 42,120 15,780 6480

Speed-up – 2.67 6.50



Fig. 5. A partition of X into eight subdomains in Example 2.

Fig. 6. The residual oil distribution for Example 1.

Table 3

Speedups with a refined grid on Dawn 2002

16 32

CPU time (s) 69,360 25,860

Speed-up – 2.68

234 Y. Ma, Z. Chen / Journal of Computational Physics 201 (2004) 224–237
4.2. Example 2

This simulation model comes from the study of development and production schemes for a different oil

field. We ran this simulation model for the time period of December 1, 1974 to October 31, 2002. The grid

blocks used in this example are 240� 120� 10, and the dimensions of the reservoir are 4770� 2360� 25 m3,
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see Fig. 5, where a decomposition of the reservoir domain into eight subdomains (on a typical layer) is

shown. There are 648 wells in this reservoir. Initially, the oil saturation in the oil rich region is 0.73, and the

average oil saturation in the entire reservoir is 0.57. The initial pressure and temperature are 3.0 Mpa and
20 �C, respectively. At 20 �C, the oil viscosity is 3000 cP. The density of crude oil is 905 kg/m3.

The simulation was run on Dawn 1000A. This computer is also a cluster with eight nodes, each node has

a CPU and 256 MB RAM, and each CPU is an IBM power P2. Superlinear speed-up has been observed for

this example. Instead of displaying the CPU time and speed-up, we test the accuracy of the solutions

obtained by the parallel code. As an illustration, we show the oil saturation distribution on the fourth layer

of the reservoir after 10,196 days in Fig. 7. The history matches for the monthly oil production (tn/month)

and cumulative oil production (104 tn) obtained on this computer are given in Figs. 8 and 9, respectively.

The curves predicted by this code match the real ones very well, which indicates that the parallel code
provides a very accurate prediction for oil production.

The code’s superlinear speed-up is attributed to both the sequential algorithm optimization (i.e, our

domain decomposition approach) and the parallel computation, which can be reasoned as follows: In the

thermal reservoir simulation, we cannot afford a global, serial simulation on the entire reservoir. Part of the

reason is that tremendously small time steps would be used on the entire reservoir and during the entire

simulation. As noted, the domain decomposition and parallel computing techniques provide an excellent

scenario in which different step sizes in different regions can be effectively made. Also, in contrast to other

codes where only the linear solver part is parallelized, our thermal code is globally parallelized from
Fig. 7. Oil saturation after 10,196 days for Example 2.

Fig. 8. History match for the monthly oil production in Example 2.



Fig. 9. History match for the cumulative oil production in Example 2.
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initialization, PVT and rock property data calculation, space and time discretization, Newton–Raphson

iteration, solution of linear systems, to data output. The global parallelization does not have the difficulty
of parallelizing preconditioners which are by nature sequential such as the widely used incomplete LU

factorization, and in addition to the parallelization of the linear solver part, the parallelization of other

parts (particularly on a distributed-memory computer) is also extremely important for a large-scale res-

ervoir simulation. Furthermore, in contrast to other parallel codes in reservoir simulation where the

governing flow equations are first discretized in time and the domain decomposition technique is then

applied to the resulting elliptic equations, the decomposition technique in our parallel code utilizes the

parabolic structure of the governing equations. As discussed earlier, a parabolic problem has a much better

condition number than a corresponding elliptic problem, and simplified domain decomposition methods
can be developed when the parabolic nature is employed.
5. Concluding remarks

Massive parallel computing technology has been applied in our thermal simulation code for applications

to large-scale petroleum reservoir simulations. In the parallel code, both computing effort and memory

requirements are distributed among and shared by all processors of a parallel computer. This code has been
tested on a parallel PC cluster and two Dawn multi-CPU computers. Its performance has been evaluated

through simulating two field flow problems. The test results indicate that doubling the processor number

reduces the total execution time by more than half and that the code achieves superlinear speed-up. The

major benefits of this parallel code are that it allows adequate description of reservoirs and accurate

representation of the reservoirs with high resolution in space, that it enhances the speed of the computer

simulations, and that more physics can be incorporated into the reservoir models.
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